Gr. 6 - Understanding Structures & Mechanisms Flight ## Hoopglider/Boomerang | Specific Expectations: 2.1 Follow established safety procedures for using tools and materials and operating flying | | | | | | |--|--|--|--|--|--| | devices. | | | | | | | 2.3 Use scientific inquiry/research skills to investigate the properties of air. | | | | | | | 2.4 Use technological problem-solving skills to design, build, and test a flying device. | | | | | | | 2.5 Use appropriate science and technology vocabulary, including <i>aerodynamics</i> , <i>compress</i> , <i>flight</i> , <i>glide</i> , <i>propel</i> , <i>drag</i> , <i>thrust</i> , and <i>lift</i> , in oral and written communication. | | | | | | | 3.1 Identify the properties of air that make flight possible. | | | | | | | 3.3 Identify and describe the four forces of flight – lift, weight, drag, and thrust. | | | | | | | Big Idea (for lesson): | | | | | | | Students investigate what materials and designs make effective and sturdy hoopgliders and | | | | | | | boomerangs, and look at the forces at play when these structures are at work. | | | | | | | Accommodations: | Differentiated Instruction: | | | | | | Increase time | \boxtimes Content: Use demo to show the content as | | | | | | | you offer verbal descriptions. | | | | | | Manipulatives | Process: Have students work in pairs and | | | | | | Chunking | support each other if physical impediments | | | | | | Step-by-Step | exist. | | | | | | Scaffolding | Product: Students may submit their final | | | | | | Copy of Notes | product in pairs, and communicate their | | | | | | Student Grouping | findings either verbally, visually, or through | | | | | | | written means. | | | | | | | Other: | | | | | | Bloom's Taxonomy: | Multiple Intelligence: | | | | | | Knowledge | ∀ Verbal/Linguistic | | | | | | Comprehension | Logical/Mathematical | | | | | | Application | Visual/Spatial | | | | | | Analysis | Bodily/Kinesthetic | | | | | | Synthesis | Naturalist | | | | | | Evaluation | Musical/Rhythmic | | | | | | | Interpersonal | | | | | | | | | | | | ## Gr. 6 - Understanding Structures & Mechanisms Flight ## **Delivering The Lesson:** | Portion & | Grouping: | | ıg: | Introduction: | Materials | |-------------------------|-----------|--------|-----|---|---| | Timing | , | - | | | | | Minds On:
5 mins | W | S | | Teacher begins by doing a Predict, Observe, Explain demo with students showing Bernoulli's Principle: -Hold a strip of paper close to their lips and blow across the topPaper responds by moving up, towards the stream of moving air, which is often unexpected. Ask students the following questions: -Where is air moving faster, above or below the paper? (Answer: above.) -Based on your observations, does slower-moving or faster-moving air exert more pressure? (Answer: slower-moving air, so it was able to push the sheet up.) -How does this relate to aircraft design? (Answer: Engineers use this property to | -Narrow strip of
light paper | | | | | | give lift to airplanes and other crafts.) | | | Action:
25 mins | W | S
M | | Have students build their own hoop gliders and boomerangs according to the instructions on the handout. Compare performances of the structures and consider the differences in design. Try to have students make 3 different varieties of hoop gliders and boomerangs. Teacher can circulate and ask questions of the different groups: -How would your structure hold up when exposed to natural forces? -Does symmetry play a role? Does balance? | Hoopglider &
Boomerang
Handout
(Materials
listed) | | Consolidate:
10 mins | W | S | | Teacher asks class to pick their best design for both the hoopglider and boomerang. Students engage in a community talking circle and share what went well, what didn't and what materials they wish they had for this project. | Hoverspeed-
Hovercraft-
Arriving-in-
Calais.mp4 |